(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

:(:(x, y), z) → :(x, :(y, z))
:(+(x, y), z) → +(:(x, z), :(y, z))
:(z, +(x, f(y))) → :(g(z, y), +(x, a))

Rewrite Strategy: FULL

(1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
:(+(x, y), z) →+ +(:(x, z), :(y, z))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [x / +(x, y)].
The result substitution is [ ].

(2) BOUNDS(n^1, INF)

(3) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

:(:(x, y), z) → :(x, :(y, z))
:(+'(x, y), z) → +'(:(x, z), :(y, z))
:(z, +'(x, f(y))) → :(g(z, y), +'(x, a))

S is empty.
Rewrite Strategy: FULL

(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(6) Obligation:

TRS:
Rules:
:(:(x, y), z) → :(x, :(y, z))
:(+'(x, y), z) → +'(:(x, z), :(y, z))
:(z, +'(x, f(y))) → :(g(z, y), +'(x, a))

Types:
: :: +':f:g:a → +':f:g:a → +':f:g:a
+' :: +':f:g:a → +':f:g:a → +':f:g:a
f :: a → +':f:g:a
g :: +':f:g:a → a → +':f:g:a
a :: +':f:g:a
hole_+':f:g:a1_0 :: +':f:g:a
hole_a2_0 :: a
gen_+':f:g:a3_0 :: Nat → +':f:g:a

(7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
:

(8) Obligation:

TRS:
Rules:
:(:(x, y), z) → :(x, :(y, z))
:(+'(x, y), z) → +'(:(x, z), :(y, z))
:(z, +'(x, f(y))) → :(g(z, y), +'(x, a))

Types:
: :: +':f:g:a → +':f:g:a → +':f:g:a
+' :: +':f:g:a → +':f:g:a → +':f:g:a
f :: a → +':f:g:a
g :: +':f:g:a → a → +':f:g:a
a :: +':f:g:a
hole_+':f:g:a1_0 :: +':f:g:a
hole_a2_0 :: a
gen_+':f:g:a3_0 :: Nat → +':f:g:a

Generator Equations:
gen_+':f:g:a3_0(0) ⇔ f(hole_a2_0)
gen_+':f:g:a3_0(+(x, 1)) ⇔ +'(gen_+':f:g:a3_0(x), f(hole_a2_0))

The following defined symbols remain to be analysed:
:

(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol :.

(10) Obligation:

TRS:
Rules:
:(:(x, y), z) → :(x, :(y, z))
:(+'(x, y), z) → +'(:(x, z), :(y, z))
:(z, +'(x, f(y))) → :(g(z, y), +'(x, a))

Types:
: :: +':f:g:a → +':f:g:a → +':f:g:a
+' :: +':f:g:a → +':f:g:a → +':f:g:a
f :: a → +':f:g:a
g :: +':f:g:a → a → +':f:g:a
a :: +':f:g:a
hole_+':f:g:a1_0 :: +':f:g:a
hole_a2_0 :: a
gen_+':f:g:a3_0 :: Nat → +':f:g:a

Generator Equations:
gen_+':f:g:a3_0(0) ⇔ f(hole_a2_0)
gen_+':f:g:a3_0(+(x, 1)) ⇔ +'(gen_+':f:g:a3_0(x), f(hole_a2_0))

No more defined symbols left to analyse.